Event and Information Management and Analysis

Module 14

Security Management To-Do List:

- Security policy Check
- Risk management Check
- Firewall Check
- Hardened platforms Check
- Services security Check
- Identity and access management Check
- User authentication Check
- Certificate management scheme Check
- Malware protection Check
- Patch management Check
- Security awareness training Check

- How do we answer these questions?
 - How is the IT environment functioning?
 - How effective are our controls?
 - How secure are we today?
 - What activities are we seeing we should we be worried about?

- Answer: Situation Awareness
- Situation awareness is being aware of what is happening in the IT environment and understanding what available information means to you now and in the future.
- Situation awareness consists of:
 - Identifying goals and objectives
 - Collecting relevant information
 - Interpreting that information
 - Forecasting future status

- Identifying goals and objectives
 - Cyber defense competition
 - Discussed in future modules
- Collecting relevant information
 - Essentially event and information management is:
 - Identifying useful sources of event data
 - Ensuring that data is being collected
 - Ideally, centralizing and normalizing this data
 - Enabling analysis of this data
 - Managing data retention, security and destruction

- Event record analysis
 - Perception of the available event data
 - Locating relevant event data
 - Interpreting the meaning of this data
 - Verifying the interpretation
 - Forecasting future status
- Incident communication follows
 - Contacting and informing peers
 - Contacting and informing leaders
 - Contacting and informing customers (subject to approval)
 - Contacting and informing partners (subject to approval)
 - Contacting regulators and/or overarching incident tracking and reporting groups (subject to approval)

- Essential in cyber security operations
 - The only dimension that is shared between physical and cyber space.
 - Yet, it is an artificial dimension
 - Unlike width, depth and height it does not physically exist
 - Time is historically referenced as units of progression of the Earth on its axis as well as orbiting around the sun
 - We actually measure a second as the 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

- Absolute time
 - Time keeping is nearly universal in computing
 - Accurate time keeping is difficult
 - Clock mechanisms have minor defects that produce errors that accumulate over time
 - Constancy is important in time keeping
 - Like a drummer keeping the beat
 - Math can compensate for other imperfections

- Relative time
 - Timeline analysis is very common
 - Evaluating events from multiple sources is as well
 - Forming a single timeline based on multiple sources will hinge on timestamps reported by these sources
 - Time zone differences can be confusing
 - Large organizations tend to pick one as the reference
 - Inconsistent time keeping may foil analysis
 - Did firewall see event A before or after anti-virus reported event B?
 - The answer may influence analysis

- External time servers
 - Operating systems support using networked time servers
 - Time services are provided by Windows domain controllers
 - Time services are provided by Internet time servers
 - With Network Time Protocol (NTP) and related services time keeping sources can be distributed, architecturally similar to DNS name services.

- A common time source improves relative time reliability among event sources
 - If all sources agree when 10:43:23 occurs that is great

Context

- Analysis is highly sensitive to context
 - Where in the environment did the event(s) occur?
 - Relative to the organization's and societal calendar, when did it occur?
 - E.g. Weekend, Labor Day, first day of Q1
 - Are these events particularly unusual?
 - Did we change some technology?
 - Are we running our organization differently?
 - Is a contractor or new employee involved?

Context

- Events with attack signatures relevant to Windows vulnerabilities targeting a Unix system are less troubling.
 - Source may need to be scrutinized, but these events indicate an ineffective attack
- Trust in the event source may also influence analysis
 - Functional reliability
 - Is the absence of relevant events from the source an indication its offline or glitching?
 - Information reliability/accuracy
 - How often does its information accurately reflect "ground truth"
 - Source integrity
 - How likely is the source "telling a lie" at the moment?

Broad Context

- Mission of the organization
- Regulatory constraints on the organization
- Value and sensitivity of information available within the IT environment
- Stakeholders of the organization
 - Customers
 - Personnel
 - Partners
 - Vendors
 - Owners

Absence

- You do not know what you do not know
 - There is no event source in place able to report what is needed
 - Event source may not be capable of reporting relevant events
 - Event source may not be configured to report relevant events
 - Event collection may not know how to process reported events
 - Event content may be missing key attributes
 - Events are being collected but are filtered in the analysis view
- Events not recorded are lost
- Recorded events not collected will be purged
 - Limited device storage is a factor

User Activity

- A sequence of actions taken in order to fulfill user goals and/or objectives
 - Processes may act as a proxy for the user who enabled them
 - Unintended automated actions may be observed possibly resulting from technology design, configuration and possible compromise
- User intentions are not typically discernable in event records.
 - An individual action may be recorded in one or more event records by one or more sources.

User Activity Analysis

- Often there is a lack of metadata or context recorded in events that tie an event to an action and furthermore ties an action to user activity.
- If a user activity is composed of a set of actions, analysts and their tools attempt to:
 - Relate event records from multiple sources to an action that caused them
 - With actions identified and the available context, analysts attempt to associate actions to activities.

Activity Analysis

- Analysts attempt to determine the goals or objectives of these activities
 - The nature of the recorded events assist with determining:
 - whether the actions violate security policy,
 - whether or not the intentions are malicious

Event stores:

- Text files are appended to as new events are recorded
 - Commonly called: log files or logs
 - Common Sources: Operating system services, application processes, firewalls, routers
- Database tables
 - Common Sources: MS Windows events, database application events, centralized IDS event repositories

- On Hosts
 - Unix, Linux, Mac OS X
 - Commonly use text logs
 - Some logs may be structured with XML
 - Log locations vary on filesystem by OS
 - Log configuration tends to be centrally managed within
 OS
 - Common logging service is called syslog, it commonly uses /etc/syslog.conf for configuration
 - Log files can get large
 - File rotation is commonly implemented
 - File compression is also a common practice

- On Hosts
 - Windows
 - Classes of event types are segregated
 - Application, Security, System and more
 - Access to log entries is via Event Viewer
 - Event Viewer supports viewing remote Windows logs

- On Infrastructure Devices
 - Log file conventions are less consistent
 - Commonly, device commands and utilities are available to review the log
 - Non-volatile memory is fairly scarce
 - Busy devices will be unable store log entries for very long
 - A "log host" can be established to collect device log entries centrally

Logged-Content Awareness and Interpretation

- Very challenging
 - Many sources of event data
 - Many locations where event data are stored
 - Within one platform
 - Between platforms
 - Each source type uses its own event structure, terminology and operational context
 - Volumes of log entries can be large
 - Needles in a haystack

Security Event and Information Management (SEIM)

- Consolidates events into a single repository
- Normalizes the structure of the events
- Provides dynamic views of the event collection
- Provides cross-source event interpretation
- Labor intensive to install and configure
- Further discussion is outside of scope

Monitoring Sources

- Dynamic sources of operational information
 - Typically these sources complement traditional logging
 - Many sources do not provide a historical record
 - SNMP is a common mechanism for monitoring infrastructure devices
 - Devices with console access often provide tools helpful for monitoring
 - Operating systems and applications provide monitoring tools
 - Unix: top, ps, last, who, iostat, netstat, uptime, du, df
 - Windows: Performance Monitor, Computer Management Copyright 2013 Iowa State University

Platform Status & Statistics

- Operational health
 - Available services
 - Available resources
 - Patch installation status
 - Security controls operational status
 - Shared resources to network users
 - Operational status of network resources being utilized
- Current & historical performance
 - Load on processing
 - Volume of network I/O
 - Volume of storage I/O
- Remaining capacity
 - Memory
 - Disk space
 - Licenses

Services Statistics

- Apache web server has status reporting
 - mod_status needs to be enabled
- Not all services provide operational statistics
 - Alternate products for the same service (DNS, mail, SSH) may support operational monitoring
 - This feature may differentiate one solution from a popular implementation (BIND, sendmail, etc.)

User Actions

- Operating systems and authenticated services are able to record user actions
 - Monitoring
 - Unix tools: ps, top, Isof
 - Output fields can be intimidating
 - Windows tools: Task Manager
 - Logging
 - Some services will log user actions (e.g. ssh)
 - Windows tools: Event Viewer

- Log analysis
 - Manual log review
 - Automated via custom or third-party tools
 - Motivations
 - Develop a baseline of what is "normal" user, system and environmental behavior
 - Identify an operational or security problem not previously reported by other means
 - Essentially anomaly detection
 - Verify or locate supporting evidence of an incident

Event Correlation

- Relating and finding greater meaning from events generated by more than one event source.
- Relating events from multiple sources requires that events share in some fashion a common operational context.
 - E.g. Sources are along a common operational path from threat's point of entry to the target
 - E.g. Sources serve a common function (e.g. anti-virus) and are placed throughout the IT environment. Multiple sources reporting a common issue may indicate the breadth of scope of the incident.

Event Correlation

- Common approach to identifying relationships among multiple sources is to identify common attributes among the events
 - Attributes are ideally produced natively by the event source as an inherent attribute of the threat
 - Supplementing the attribute pool may be necessary in order to improve the operational context of the event information
 - Supplementing the attribute pool may be necessary in order to compensate for discrepancies of terminology used to identify or describe the same semantic (ex. Firewall A issues "permit" and Firewall B issues "allow" for packets that pass policy checking)

- Event Correlation approaches
 - Manual labor intensive method of matching, attributes across log entries provided by multiple sources
 - Automation automated pattern matching of events as they are collected
 - Common feature of Security Information Event Management systems

Link analysis

- Evaluation of relationships among types of things, such as people, hosts, communications, actions
- Netflow data is a good candidate for link analysis
- Typically analysis results are presented in an interactive visualization

- Uses
 - Discovery of unexpected relationships
 - Worm propagation
 - Covert network communications
 - Confirmation of known patterns of behavior

Analysis Strategy

- Determine what decisions you want to enable
- Determine what information you would want to have for those decisions
- Enable and collect that information
 - Prioritizing event sources and types may be necessary
- Differentiate status awareness needs from incident handling
 - Status provides indication of the presence (or lack of) of known potential issues as well as unforeseen issues
 - Incident handling involves, in part, of confirming issues and determining the nature of the issue

Analysis Strategy

- Locate available tools able to enable your analytical objectives
- Determine how to deploy these tools
- Determine who and when and why these tools will be used
- Learn how to use these tools
 - Understand their limitations
 - Understand their use in context of your analytical objectives