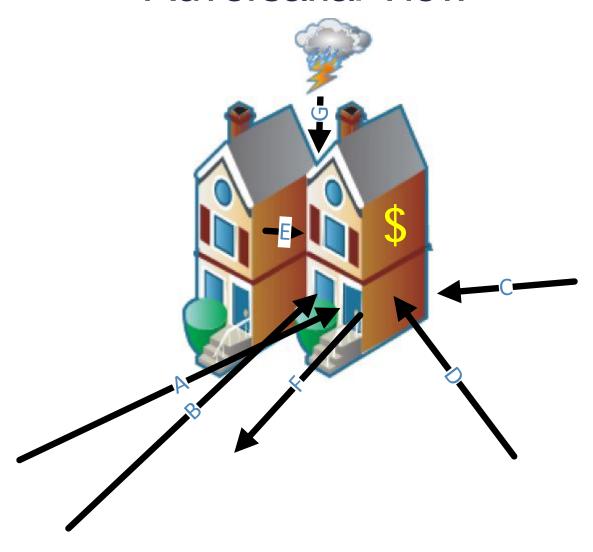
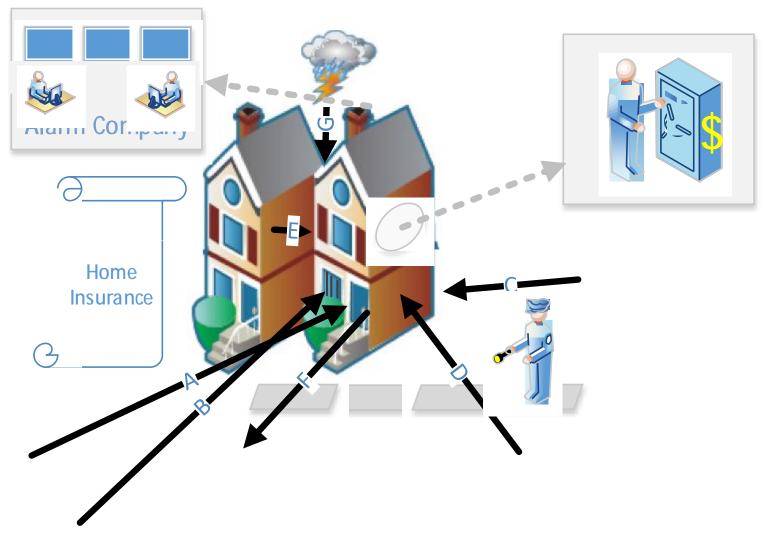
Network Security

Module 13


Defense in Depth

- Multiple overlapping mechanisms separate a valued resource from relevant threats
 - Mechanisms need not be all:
 - Technical (e.g. policies, procedures)
 - Preventative (e.g. monitoring, response)
 - Network oriented (e.g. OS policy, application authentication, patch management)

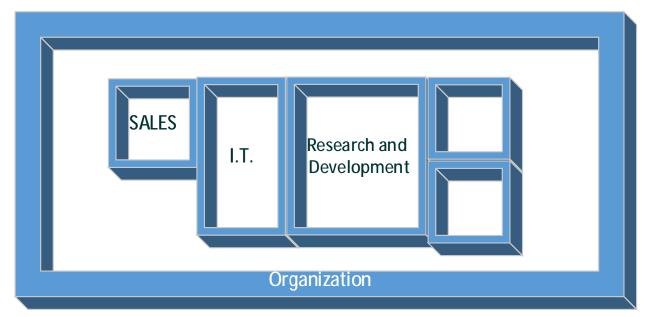

Defense in Depth

- In essence, it is a principle of defense diversity
 - Not relying on a single mechanism to protect what is valuable
- This approach guards against:
 - Loss of adequate protection due to mechanism maintenance, mechanism failure and an unexpected threat origin

Adversarial View

Defensive In Depth

Perimeter

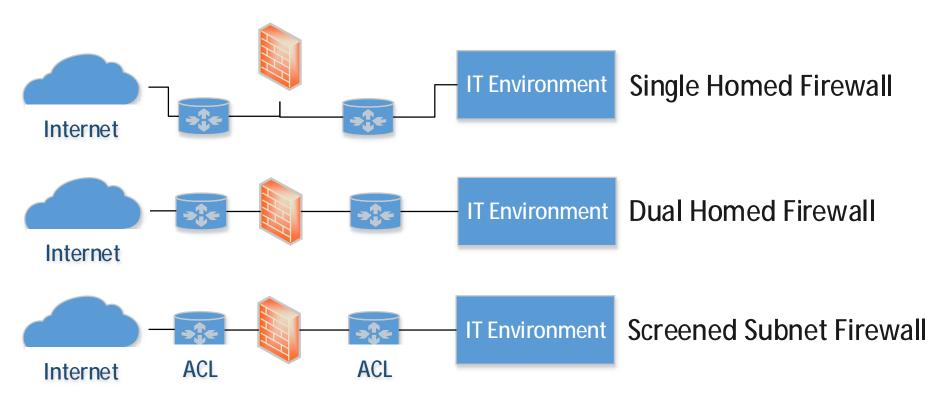

- The boundary between what is being protected and the likely source of threats.
 - Commonly associated with property lines or physical dimensions of a facility
 - Examples: Office building, manufacturing complex, military installation
- Although many cyber threats originate from the Internet, a good number do not.
 - An inside attack may eventually use the Internet after some level of success.

Perimeter

- Inside threats successfully breach the exterior perimeter
- Sources of inside threats:
 - Employees and Contractors
 - Visitors
 - Compromised portable devices
 - Poor worker security awareness and training
 - Victim of phishing
 - Drive by download

Perimeter

 Compartmenting resources (e.g. tools, technology and information) creates perimeters within the interior


Perimeters

- Logically perimeters are the result of one or more controls maintaining confidentiality, integrity and availability of one or more resources (e.g. processes, people, information, systems).
- As the threat sources become more pervasive, so will the establishment of perimeters

- Information flow is needed between parties even though:
 - The parties may not be fully trusted
 - The method of communication is not trusted
 - Example: Internet
- Firewalls are intended to limit exposure
 - Control which parties may communicate across it
 - Control the type of communication flowing through it

- Firewalls Product Types
 - Dedicated devices
 - Multi-function security devices
 - Unified Threat Management AV, FW, IDS, etc.
 - Software application running on generic computer
 - Routers with access control enforcement

Some deployment configurations

- Firewall logical types
 - Based on what layers of the protocol stack the policy enforcement takes place
 - Layer 3 IP Networking Layer
 - Enforces rules regarding IP addressing and IP protocol parameters
 - Commonly enhanced to be "stateful"
 - TCP protocol is stateful and many firewalls of this type are aware of the beginning, end and middle of a TCP connection

- Layer 5 (TCP/IP model) or Layer 7 (OSI model) – Application Layer
 - Logic ensures protocol (e.g. HTTP, FTP, SMTP) is being used properly
 - Logic is able to restrict protocol options
 - Logic is able to inspect more of the application payload
 - A common implementation method is through proxies

Intrusion Detection & Prevention

- Firewalls permit a restricted flow of traffic
 - Traffic that does flow may have malicious intent
- Intrusion detection systems (IDS) inspect traffic looking for suspicious behavior
- Originally this technology was meant to be a detection not a prevention technology

Intrusion Detection & Prevention

- Suspicious traffic is determined by:
 - Signatures or patterns of known suspicious behavior
 - A new threat may not be detected
 - Anomalies within traffic
 - Anomalies may not be malicious, so related alerts may not be useful
- Intrusion Prevention System (IPS)
 - Stop suspicious traffic using mentioned detection techniques
 - Instruct firewall to change policy
 - Block traffic at the IPS device

IDS and CDC

- Cyber Defense Competitions have by design an abnormally high rate of threats.
 - You know you are under attack
 - It may help identify the type of attack, but it may not!

- What is it?
 - A proprietary protocol designed by Cisco
 - Multiple variants exist, such as: sFlow, NetStream, IPFIX, J-Flow
 - Network activity recording technique
 - Record is an "IP flow"
 - Concept is not native to IP protocol definition
 - For Cisco, a unique "IP flow" is designated based on 5 to 7 packet attributes

- Cisco's selected attributes are:
 - IP Source Address
 - IP Destination Address
 - Source Port (Transport protocol)
 - Destination Port (Transport protocol)
 - Layer 3 protocol type (e.g. ICMP,TCP,UDP,OSPF)
 - Class of Service
 - Router or switch interface

- A new record is opened for each unique combination
 - A timer is set for each record
 - If a new packet arrives matching an existing attribute combination the counters for packet count and number of bytes transferred are updated for the "IP Flow"
 - Timer is reset
 - If timer expires, the "IP Flow" is considered terminated
 - TCP SYN and TCP FIN, RST help designate the begin and end of a TCP connection

- Additional information recorded in each "IP Flow" record
 - Timestamps
 - Next hop address
 - Subnet mask of source and destination addresses
 - TCP flags

Uses:

- Application and network usage
- Impact analysis of network changes
- Unusual network activity patterns and network threat tracking
- Network productivity and utilization

Netflow in the Playground

- Netflow support is greatest among network devices, which can not be virtualized
- Pfsense, FreeBSD and OpenBSD are platforms that support Netflow
- As of vSphere 5, VMWare supports Netflow on virtual switches.
 - Requires additional licensing, not available

- Configuration
 - Need to establish a Netflow collector
 - Receives exported Netflow records
 - Loads records in a database
 - A reporting and/or monitoring tool
 - Dynamic views of Netflow require a monitoring tool
 - Tool retrieves updates from collector
 - Renders information in various visual formats

- Primary vector of malware is the network
 - Worms
 - User web browsing
 - Email
 - File transfers
- Physical transfer of malware still occurs
 - Infected USB thumb drive
 - Infected portable computing device attaching to network

Methods of Detection:

- Signatures content of a file is compared to a list to determine if the file is present on a list of known threats
- Heuristics a "generic" signature that is able to identify multiple variations of malware that have characteristics in common
- Isolated testing suspected file is executed in an isolated and instrumented environment to determine its nature

- Firewalls, Patch Management, Configuration Management, Security Awareness
 - Limit exposure to vulnerabilities that malware exploits
- Defense in Depth
 - Anti-virus engine at the perimeter
 - Anti-virus engine on email servers
 - Anti-virus engine on file servers
 - Anti-virus engine on endpoints (PCs, tablets, smartphones)

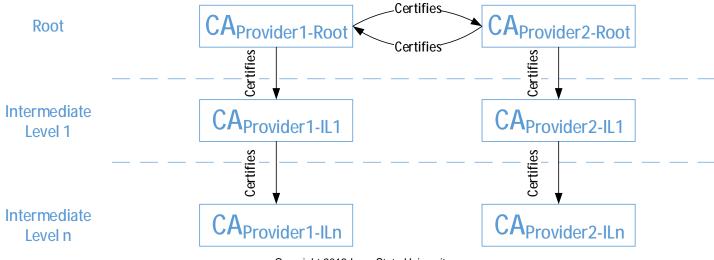
- Signature Updates
 - Anti-virus is not effective if signatures are not maintained by organization or vendor
 - Enterprise anti-virus products provide centralized monitoring and control
 - It can be determined which hosts are not current
 - It is possible to push signatures and initiate AV scans
 - AV is a useful tool to corroborate or confirm indications of possible infection on a host

- Weakness of AV:
 - Relies heavily on vendors having a sample to analyze
 - Can be disabled or rendered ineffective if host compromise is severe
 - Malware with access to the kernel can block detection
 - Solution is to reboot host with a clean OS and scan the hard drive contents.
 - Disruptive and labor intensive

- Vendor Diversity
 - Not knowing the delay a vendor may have in preparing and distributing signatures to the newest threats
 - Deploy different vendor for:
 - Malware that is missed by one engine type will be caught by the next type.
 - Perimeter protection
 - Email server protection
 - File server protection
 - Endpoint protection

- Downsides to Vendor Diversity
 - Costs
 - Licensing tends to be volume oriented
 - Fewer licenses bought results in higher per license costs
 - Labor efficiency
 - More products to manage separately
 - » Unified management interface is unlikely
 - More products to train on
- Uncertain security benefit in the long run
- Multiple engines on one host may not function and will consume more CPU time and generate more I/O

- Certificates
 - The binding of public key to an identity
 - Service
 - Person
 - Organization
 - Trust in the binding is necessary
 - You want to know with whom or what you are sharing sensitive information
 - Public keys are distributed to strangers by strangers


- Asymmetric or public key cryptography provides the literal security services of:
 - Encrypting/decrypting information
 - Integrity
- These basic services can be extended to provide:
 - Authentication
 - Non-repudiation

- Encrypting sensitive information for use by another is great so long they were the recipient you intended
- Authentication relies on at least one factor
 - Private key could be either "what you have" or "what you know" (you have good memory)
 - But whose key is it really?
 - Are we letting in a stranger?
- Non-repudiation relies on involved parties not being able to wiggle out of something they did or said
 - Did we accept a digital signature from the wrong person?
 - Could a party legitimately claim that the digital signature was not theirs?

- Those issues are the reason for certificates
- But, who do we trust to bind public keys to identities?
 - Anybody?
 - Do they know what they are doing?
 - Are they who they say they are?
 - I, Frank, certify that public key DAF23D is Sally's
 - Who is Frank? Do you know and trust him?

- Certificate Authority (CA)
 - An entity that issues, distributes, verifies and manages certificates
 - Certificate lifecycle issuance, use, expiration
 - Revocation may be necessary if public-private key pair is compromised or control of it was lost
 - Has the necessary technology, people and procedures to perform certificate services, users can trust

- Certificate authorities can issue certificates for other CAs
 - Users do not trust CA₁ but trust CA₂
 - User may trust CA₁ if and only if CA₂ trusts CA₁
- CAs can be deployed in a hierarchical fashion

Copyright 2013 Iowa State University

- Registration Authority (RA)
 - Performs a subset of CA services
 - Verifies the identity of the entity requesting a certificate
 - Acts a liaison between entity requesting a certificate and the CA
 - Could assist an entity by accepting requests to revoke an issued certificate

- Self-Signed Certificates
 - Certificate is issued by the person or organization that generated the key pair
 - CA's certificate needs to be added trusted list used by applications like a web browser to avoid warnings and mistaken trust
- Commercial Certificates
 - Certificate is issued by a CA that is recognized
 - Typically application developers provide an initial list of "root certificates"